Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optical constants of In0.53Ga0.47As/InP: Experiment and modeling

Identifieur interne : 00DC77 ( Main/Repository ); précédent : 00DC76; suivant : 00DC78

Optical constants of In0.53Ga0.47As/InP: Experiment and modeling

Auteurs : RBID : Pascal:02-0539396

Descripteurs français

English descriptors

Abstract

The optical constants (E)=1(E)+i2(E) of unintentionally doped In0.53Ga0.47As lattice matched to InP have been measured at 300 K using spectral ellipsometry in the range of 0.4 to 5.1 eV. The (E) spectra displayed distinct structures associated with critical points at E0 (direct gap), spin-orbit split E00 component, spin-orbit split E1, E11, E0 feature, as well as E2. The experimental data over the entire measured spectral range (after oxide removal) has been fit using the Holden model dielectric function [Holden , Phys. Rev. B 56, 4037 (1997)], plus a Kramers-Kronig consistent correction, described in this work, that improves the fitting at low energies. This extended model is based on the electronic energy-band structure near these critical points plus excitonic and band-to-band Coulomb-enhancement effects at E0, E00, and the E1, E11, doublet. In addition to evaluating the energies of these various band-to-band critical points, information about the binding energy (R1) of the two-dimensional exciton related to the E1, E11 critical points was obtained. The value of R1 was in good agreement with effective mass/kp theory. The ability to evaluate R1 has important ramifications for first-principles band-structure calculations that include exciton effects at E0, E1, and E2 [M. Rohlfing and S. G. Louie, Phys. Rev. Lett. 81, 2312 (1998); S. Albrecht , Phys. Rev. Lett. 80, 4510 (1998)]. © 2002 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:02-0539396

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optical constants of In
<sub>0.53</sub>
Ga
<sub>0.47</sub>
As/InP: Experiment and modeling</title>
<author>
<name sortKey="Munoz, Martin" uniqKey="Munoz M">Martin Munoz</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>New York Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn, New York 11210</s1>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>New York Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="04">
<s1>Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455</s1>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Minnesota</region>
</placeName>
<wicri:cityArea>Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="05">
<s1>IBM T. J. Watson Research Center, Route 134/P.O. Box 218, Yorktown Heights, New York 10598</s1>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>IBM T. J. Watson Research Center, Route 134/P.O. Box 218, Yorktown Heights</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Holden, Todd M" uniqKey="Holden T">Todd M. Holden</name>
</author>
<author>
<name sortKey="Pollak, Fred H" uniqKey="Pollak F">Fred H. Pollak</name>
</author>
<author>
<name sortKey="Kahn, Mathias" uniqKey="Kahn M">Mathias Kahn</name>
</author>
<author>
<name sortKey="Ritter, Dan" uniqKey="Ritter D">Dan Ritter</name>
</author>
<author>
<name sortKey="Kronik, Leeor" uniqKey="Kronik L">Leeor Kronik</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Physics</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<wicri:noCountry code="no comma">Department of Physics</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Guy M" uniqKey="Cohen G">Guy M. Cohen</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Physics</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<wicri:noCountry code="no comma">Department of Physics</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">02-0539396</idno>
<date when="2002-11-15">2002-11-15</date>
<idno type="stanalyst">PASCAL 02-0539396 AIP</idno>
<idno type="RBID">Pascal:02-0539396</idno>
<idno type="wicri:Area/Main/Corpus">00E497</idno>
<idno type="wicri:Area/Main/Repository">00DC77</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. appl. phys.</title>
<title level="j" type="main">Journal of applied physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ab initio calculations</term>
<term>Dielectric function</term>
<term>Effective mass</term>
<term>Ellipsometry</term>
<term>Energy gap</term>
<term>Excitons</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Kramers Kronig analysis</term>
<term>Optical constants</term>
<term>Semiconductor heterojunctions</term>
<term>Spin-orbit interactions</term>
<term>k.p calculations</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7820C</term>
<term>8105E</term>
<term>7866F</term>
<term>7145G</term>
<term>7722C</term>
<term>7120N</term>
<term>7320A</term>
<term>7135</term>
<term>7320M</term>
<term>7118</term>
<term>7115</term>
<term>7170E</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Gallium arséniure</term>
<term>Semiconducteur III-V</term>
<term>Hétérojonction semiconducteur</term>
<term>Fonction diélectrique</term>
<term>Constante optique</term>
<term>Bande interdite</term>
<term>Ellipsométrie</term>
<term>Analyse Kramers Kronig</term>
<term>Exciton</term>
<term>Masse effective</term>
<term>Calcul k.p</term>
<term>Calcul ab initio</term>
<term>Interaction spin orbite</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The optical constants (E)=
<sub>1</sub>
(E)+i
<sub>2</sub>
(E) of unintentionally doped In
<sub>0.53</sub>
Ga
<sub>0.47</sub>
As lattice matched to InP have been measured at 300 K using spectral ellipsometry in the range of 0.4 to 5.1 eV. The (E) spectra displayed distinct structures associated with critical points at E
<sub>0</sub>
(direct gap), spin-orbit split E
<sub>0</sub>
<sub>0</sub>
component, spin-orbit split E
<sub>1</sub>
, E
<sub>1</sub>
<sub>1</sub>
, E
<sub>0</sub>
<sup></sup>
feature, as well as E
<sub>2</sub>
. The experimental data over the entire measured spectral range (after oxide removal) has been fit using the Holden model dielectric function [Holden , Phys. Rev. B 56, 4037 (1997)], plus a Kramers-Kronig consistent correction, described in this work, that improves the fitting at low energies. This extended model is based on the electronic energy-band structure near these critical points plus excitonic and band-to-band Coulomb-enhancement effects at E
<sub>0</sub>
, E
<sub>0</sub>
<sub>0</sub>
, and the E
<sub>1</sub>
, E
<sub>1</sub>
<sub>1</sub>
, doublet. In addition to evaluating the energies of these various band-to-band critical points, information about the binding energy (R
<sub>1</sub>
) of the two-dimensional exciton related to the E
<sub>1</sub>
, E
<sub>1</sub>
<sub>1</sub>
critical points was obtained. The value of R
<sub>1</sub>
was in good agreement with effective mass/kp theory. The ability to evaluate R
<sub>1</sub>
has important ramifications for first-principles band-structure calculations that include exciton effects at E
<sub>0</sub>
, E
<sub>1</sub>
, and E
<sub>2</sub>
[M. Rohlfing and S. G. Louie, Phys. Rev. Lett. 81, 2312 (1998); S. Albrecht , Phys. Rev. Lett. 80, 4510 (1998)]. © 2002 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. phys.</s0>
</fA03>
<fA05>
<s2>92</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optical constants of In
<sub>0.53</sub>
Ga
<sub>0.47</sub>
As/InP: Experiment and modeling</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MUNOZ (Martin)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HOLDEN (Todd M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>POLLAK (Fred H.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KAHN (Mathias)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>RITTER (Dan)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>KRONIK (Leeor)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>COHEN (Guy M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>New York Center for Advanced Technology in Ultrafast Photonic Materials and Applications, Brooklyn College of the City University of New York, Brooklyn, New York 11210</s1>
</fA14>
<fA14 i1="03">
<s1>Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455</s1>
</fA14>
<fA14 i1="05">
<s1>IBM T. J. Watson Research Center, Route 134/P.O. Box 218, Yorktown Heights, New York 10598</s1>
</fA14>
<fA20>
<s1>5878-5885</s1>
</fA20>
<fA21>
<s1>2002-11-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2002 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>02-0539396</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of applied physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The optical constants (E)=
<sub>1</sub>
(E)+i
<sub>2</sub>
(E) of unintentionally doped In
<sub>0.53</sub>
Ga
<sub>0.47</sub>
As lattice matched to InP have been measured at 300 K using spectral ellipsometry in the range of 0.4 to 5.1 eV. The (E) spectra displayed distinct structures associated with critical points at E
<sub>0</sub>
(direct gap), spin-orbit split E
<sub>0</sub>
<sub>0</sub>
component, spin-orbit split E
<sub>1</sub>
, E
<sub>1</sub>
<sub>1</sub>
, E
<sub>0</sub>
<sup></sup>
feature, as well as E
<sub>2</sub>
. The experimental data over the entire measured spectral range (after oxide removal) has been fit using the Holden model dielectric function [Holden , Phys. Rev. B 56, 4037 (1997)], plus a Kramers-Kronig consistent correction, described in this work, that improves the fitting at low energies. This extended model is based on the electronic energy-band structure near these critical points plus excitonic and band-to-band Coulomb-enhancement effects at E
<sub>0</sub>
, E
<sub>0</sub>
<sub>0</sub>
, and the E
<sub>1</sub>
, E
<sub>1</sub>
<sub>1</sub>
, doublet. In addition to evaluating the energies of these various band-to-band critical points, information about the binding energy (R
<sub>1</sub>
) of the two-dimensional exciton related to the E
<sub>1</sub>
, E
<sub>1</sub>
<sub>1</sub>
critical points was obtained. The value of R
<sub>1</sub>
was in good agreement with effective mass/kp theory. The ability to evaluate R
<sub>1</sub>
has important ramifications for first-principles band-structure calculations that include exciton effects at E
<sub>0</sub>
, E
<sub>1</sub>
, and E
<sub>2</sub>
[M. Rohlfing and S. G. Louie, Phys. Rev. Lett. 81, 2312 (1998); S. Albrecht , Phys. Rev. Lett. 80, 4510 (1998)]. © 2002 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H20C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A05H</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H66F</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70A45G</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70G22C</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B70A20N</s0>
</fC02>
<fC02 i1="07" i2="3">
<s0>001B70C20A</s0>
</fC02>
<fC02 i1="08" i2="3">
<s0>001B70A35</s0>
</fC02>
<fC02 i1="09" i2="3">
<s0>001B70C20M</s0>
</fC02>
<fC02 i1="10" i2="3">
<s0>001B70A18</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7820C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>8105E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7866F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7145G</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7722C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>7120N</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>7320A</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>7135</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>7320M</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>7118</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>7115</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>7170E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Hétérojonction semiconducteur</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Semiconductor heterojunctions</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Fonction diélectrique</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Dielectric function</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Constante optique</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Optical constants</s0>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Bande interdite</s0>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Energy gap</s0>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Ellipsométrie</s0>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Ellipsometry</s0>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Analyse Kramers Kronig</s0>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Kramers Kronig analysis</s0>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Exciton</s0>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Excitons</s0>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Masse effective</s0>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Effective mass</s0>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Calcul k.p</s0>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>k.p calculations</s0>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Calcul ab initio</s0>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Ab initio calculations</s0>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Interaction spin orbite</s0>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Spin-orbit interactions</s0>
</fC03>
<fN21>
<s1>316</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0245M000218</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00DC77 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00DC77 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:02-0539396
   |texte=   Optical constants of In0.53Ga0.47As/InP: Experiment and modeling
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024